Particle Physics from Tevatron to LHC: what we know and what we hope to discover

Beate Heinemann, UC Berkeley and LBNL Università di Pisa, February 2010

Outline

Introduction

- Outstanding problems in particle physics
 - and the role of hadron colliders
- Current and near future colliders: Tevatron and LHC

Standard Model Measurements

- Hadron-hadron collisions
- Cross Section Measurements of jets, W/Z bosons and top quarks

Constraints on and Searches for the Higgs Boson

- W boson and Top quark mass measurements
- Standard Model Higgs Boson

Searches for New Physics

- Higgs Bosons (beyond the Standard Model)
- Supersymmetry
- High Mass Resonances (Extra Dimensions etc.)
- First Results from the 2009 LHC run

High Mass Resonances

Resonances or Tails

- New resonant structure:
 - New gauge boson:
 - Z' \rightarrow ee, $\mu\mu$, $\tau\tau$, tt
 - W' \rightarrow ev, $\mu\nu$, $\tau\nu$, tb
 - Randall-Sundrum Graviton:
 - G→ee, μμ, ττ, γγ, WW, ZZ,...
- Tail:
 - Large extra dimensions [Arkani-Hamed, Dvali, Dimopoulos (ADD)]
 - Many many many resonances close to each other:
 - "Kaluza-Klein-Tower": ee, μμ, ττ, γγ, WW, ZZ,…
 - Contact interaction
 - Effective 4-point vertex
 - E.g. via t-channel exchange of very heavy particle
 - Like Fermi's β-decay

Large Extra Dimensions

- Introduce extra spatial dimensions
 - Their presence weakens gravity
 - Gravity gets much stronger and only appears to be so weak
 - Addresses hierarchy problem

Collider Signatures of Extra Dimensions

- Monojets:
 - A graviton escapes

- Di-fermion or diboson resonances
 - Virtual exchange of graviton

Alternative model by Randall, Sundrum (1999) predicts narrow resonances

Dilepton Selection

- Two high momentum leptons
 - irreducible background is Drell-Yan production
 - Other backgrounds:
 - Jets faking leptons: reject by making optimal lepton ID cuts
 - WW, diphoton, etc. very small
- Can search for
 - **Dielectrons**
 - **Dimuons**
 - Ditaus
 - Electron+muon
 - flavor changing
 - Dijets

Spin-1 Bosons: Z' and W'

- 2 high P_T leptons:
 - ee, ev, μμ, eμ
- Data agree well with background

Interpreting the Mass plots

- Different curves represent different theoretical models
 - Mass limit depends on this
 - Cross section limit is independent of theory

For SM couplings:

	Z′→ee	Ζ ′→μμ
limit	>966 GeV	>1030 GeV

Resonances in Dijets and Ditop

- Data agree well with background
- No sign of resonance structure

Constraints on Other Resonances

- Many models predict new resonances
 - Data constrain the masses and coupling strenghts

Z' type particles should be easy at LHC!

Events/50 GeV/0.1 fb⁻¹

- Signal creates clear peak
- Main background is well understood theoretically
- Applies to any narrow resonances decaying to
 - electrons, muons, photons
- Muons suffer from worsening resolution at high momentum

- Sensitive to
 - 1 TeV with L~100 pb⁻¹
 - 1.5 TeV with L~1 fb⁻¹

The 2009 LHC Run

Detector is fully operational

Subdetector	Number of Channels	Operational Fraction
Pixels	80 M	97.9%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.2%
LAr EM Calorimeter	170 k	98.8%
Tile calorimeter	9800	99.2%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Trigger	370 k	98.5%
TGC Endcap Muon Trigger	320 k	99.4%
LVL1 Calo trigger	7160	99.8%

Pixels and Silicon strips (SCT) at nominal voltage only with stable beams

[■] Solenoid and/or toroids off in some periods

Muon forward chambers (CSC) running in separate partition for rate tests

Summary of Data Taking in ATLAS

Recorded data samples	Number of events	Integrated luminosity (< 30% uncertainty)
Total With stable beams (→ tracker fully on) At √s=2.36 TeV (flat top)	~ 920k ~ 540k ~ 34k	~ 20 µb ⁻¹ ~ 12 µb ⁻¹ ≈ 1 µb ⁻¹

Particle Identification

Transition radiation intensity is proportional to particle relativistic factor γ =E/mc².

Sunday 6 December: machine protection system commissioned

- → stable (safe) beams for first time
- → full tracker at nominal voltage
- → whole ATLAS operational

Observing well-known Resonances

$$K_s^0 \to \pi^+\pi^-, \Lambda \to p\pi^-$$

 Excellent agreement between data and simulation

Photon Conversions: $\gamma \rightarrow e^+e^-$

Probe material inside the tracker volume

Resonances in the Calorimeter: $\pi^0 \rightarrow \gamma \gamma$

- Photon candidates: E>300 MeV
- No corrections for energy loss before calorimeter
- Data and simulation agree very well

Calorimeter Energies

- Cell energy distribution in LAr calorimeter very well described by simulation
- Observe that higher energies are present at higher centre-of-mass energy in Tile calorimeter

First Jets in ATLAS and CMS

Kinematic Properties of Jets

Shape agrees well between data and simulation

Missing Transverse Energy

- Sensitive to many detector problems
 - Noise, dead channels, miscalibration,...
- MEtx and MEty show the x- and y- component of the missing transverse energy vector

Missing E_T Resolution

Data in good agreement with simulation

Electron and Photon Detection

- Identification of photons and electrons relies on shower shape in electromagnetic calorimeter
 - Nice agreement of data and simulation
- Good agreement in E/p distribution
 - Compare energy measured in calorimeter to momentum in tracker
 - Probes material and electromagnetic energy scale

Calorimeter Response

- Response to single hadrons well understood
- Also good agreement vs eta
 - Covering many detector technologies

Conclusions

- We know the Standard Model describes all collider data so far
 - Great advances were made by the Tevatron
 - in probing strong and electroweak interactions
 - Searching for many new physics scenarios
- We hope to discover new particles that address the deficiencies of the Standard Model, e.g.
 - Dark Matter (Supersymmetry)
 - Hierarchy Problem (Supersymmetry, extra dimensions,...)
 - Something unexpected
- The Tevatron will continue to test the SM and the LHC will soon rival it in discovery potential
 - The 2009 pilot LHC run shows that the detectors work very well
 - The 2010/2011 run should deliver enough luminosity to start probing the Higgs boson and new physics

Exciting times are ahead of us!

